organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Fang Li,* Ya-Qing Feng, Guang-Yuan Yao and Xu-Dong You

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lxf7212@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.047 wR factor = 0.119 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1'-Methyl-4'-(2,4-dichlorophenyl)-1*H*indole-3-spiro-2'-pyrrolidine-3'-spiro-5"-(thiazolo[3,2-*b*][1,2,4]triazole)-2,6"(3*H*,5"*H*)-dione

The title compound, $C_{21}H_{15}Cl_2N_5O_2S$, was synthesized by the intermolecular [3 + 2]-cycloaddition of the azomethine ylide derived from isatin and sarcosine by a decarboxylative route and 5-(2,4-dichlorobenzylidene)thiazolo[3,2-b][1,2,4]triazol-6-one. In the molecule, the two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-b][1,2,4]triazol-6-one ring. The 2,4-dichlorophenyl group is disordered. Molecules are connected into chains by intermolecular N-H···N hydrogen bonds and weak C-H···O interactions.

Comment

Spiro-compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi *et al.*, 1991; James *et al.*, 1991). 1,3-Dipolar cycloaddition reactions are an important process for the construction of spiro-compounds (Caramella & Grunanger, 1984). Here the structure of 1-methyl-spiro[2.3']oxindole-spiro[3.'']thiazolo[3'',2''-b][1'',2'',4'']-azol-6''-one-4-(2,4-dichloro)-phenyl-pyrrolidine, (I), is reported.

Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms have been omitted. The minor disordered component is indicated by open bonds.

Received 29 September 2003 Accepted 17 October 2003 Online 23 October 2003

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

4299 independent reflections 2878 reflections with $I > 2\sigma(I)$

 $\begin{aligned} R_{\rm int} &= 0.035\\ \theta_{\rm max} &= 26.4^\circ \end{aligned}$

 $h = -25 \rightarrow 13$

 $k = -7 \rightarrow 7$

 $l = -21 \rightarrow 21$

Part of the crystal structure of (I), showing molecules connected through unit-cell translations in the **b** direction by N-H···N hydrogen bonding and weak C-H···O interactions, which are indicated by dashed lines [symmetry codes: (i) x, 1 + y, z; (ii) x, y - 1, z].

Compound (I) was synthesized by the intermolecular [3 + 2]-cycloaddition of the azomethine ylide derived from isatin and sarcosine by a decarboxylative route and 5-(2,4-dichlorobenzylidene)thiazolo[3,2-b][1,2,4]triazol-6-one. The molecular structure of (I) is illustrated in Fig. 1. There are two spiro junctions in the molecule, linking a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a thiazolo[3,2-b][1,2,4]triazol-6-one ring. The atoms of the 2,4-dichlorophenyl group are disordered over two sites (see Fig. 1), the ratio of occupancies being 0.542:0.458.

Molecules are connected into chains, through unit-cell translations in the *b* axis direction, by intermolecular N– H···N hydrogen bonds $[N5 \cdot \cdot \cdot N5^{i} = 3.117 (3) \text{ Å}, H5 \cdot \cdot \cdot N5^{i} = 2.30 \text{ Å} and N5-H5 \cdot \cdot \cdot N5^{i} = 158^{\circ}$; symmetry code: (i) *x*, 1 + *y*, *z*] and weak C-H···O interactions $[C14 \cdot \cdot \cdot O2^{ii} = 3.355 \text{ Å}, H14A \cdot \cdot \cdot O2^{ii} = 2.52 \text{ Å} and C14-H14A \cdot \cdot \cdot O2^{ii} = 144^{\circ}$; symmetry code: (ii) *x*, *y* - 1, *z*] (see Fig. 2).

Experimental

A mixture of 5-(2,4-dichlorobenzylidene)thiazolo[3,2-*b*][1,2,4]triazol-6-one (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) were refluxed in methanol (60 ml) until the starting material had disappeared, as evidenced by thin-layer chromatography. When the reaction was complete, the solvent was removed *in vacuo* and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 3:1), giving the title compound, (I) (m.p. 495–496 K). IR (KBr): 3215.6 (NH), 1765.0, 1711.0 (C=O) cm⁻¹; ¹H NMR (p.p.m.): 2.29 (s, 3H, N-CH₃), 3.64 (m, 1H, -CH₂), 4.14 (m, 1H, -CH₂), 4.62 (m, 1H, -CH), 6.77-7.77 (m, 8H, Ar-H), 7.85 (bs, 1H, -NH). 20 mg of (I) was dissolved in 15 ml dioxane. The solution was kept at room temperature for 15 d and natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Crystal data

C21H15Cl2N5O2S $D_r = 1.485 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $M_r = 472.34$ Monoclinic, $P2_1/c$ Cell parameters from 886 a = 20.130 (6) Å reflections b = 6.357 (2) Å $\theta = 3.2 - 26.0^{\circ}$ $\mu = 0.44~\mathrm{mm}^{-1}$ c = 17.394(5) Å $\beta = 108.369 (5)^{\circ}$ T = 293 (2) KV = 2112.6 (11) Å³ Block, colorless Z = 4 $0.24 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.825, T_{\max} = 0.960$
11420 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2 (F_o^2) + (0.084P)^2]$
$wR(F^2) = 0.119$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
4299 reflections	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
330 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and refined in the riding-model approximation $[U_{iso}(H) = 1.2U_{eq} \text{ of the} carrier atom or <math>1.5U_{eq}$ for methyl H atoms]. The disordered benzene ring was constrained to have the geometry of a regular hexagon, with C–C bond lengths of 1.39 (1) Å.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

References

- Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caramella, P. & Grunanger, P. (1984). 1,3-*Dipolar Cycloaddition Chemistry*, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.
- James, D. M., Kunze, H. B. & Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137– 1140.
- Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). *Tetrahedron*, 47, 6617–6622.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.